При оцифровке звука в памяти запоминаются только отдельные значения сигнала. Чем чаще записывается сигнал, тем лучше качество записи.
Частота дискретизации f – это количество раз в секунду, которое происходит преобразование аналогового звукового сигнала в цифровой. Измеряется в Герцах (Гц).
Глубина кодирования (а также, разрешение) – это количество бит, выделяемое на одно преобразование сигнала. Измеряется в битах (Бит).
Возможна запись нескольких каналов: одного (моно), двух (стерео), четырех (квадро).
Обозначим частоту дискретизации – f (Гц), глубину кодирования – B(бит), количество каналов – k, время записи – t(Сек).
Количество уровней дискретизации d можно рассчитать по формуле: d = 2B.
Тогда объем записанного файла V(бит) = f * B * k * t.
Или, если нам дано количество уровней дискретизации,
V(бит) = f * log2d * k * t.
Единицы измерения объемов информации:
1 б (байт) = 8 бит
1 Кб (килобайт) = 210 б
1 Мб (мегабайт) = 220 б
1 Гб (гигабайт) = 230 б
1 Тб (терабайт) = 240 б
1 Пб (петабайт) = 250 б
При оцифровке графического изображения качество картинки зависит от количества точек и количества цветов, в которые можно раскрасить точку.
Если X – количество точек по горизонтали,
Y – количество точек по вертикали,
I – глубина цвета (количество бит, отводимых для кодирования одной точки), то количество различных цветов в палитре N = 2I. Соответственно, I = log2N.
Тогда объем файла, содержащего изображение, V(бит) = X * Y * I
Или, если нам дано количество цветов в палитре, V(бит) = X * Y * log2N.
Скорость передачи информации по каналу связи (пропускная способность канала) вычисляется как количество информации в битах, переданное за 1 секунду (бит/с).
Объем переданной информации вычисляется по формуле V = q * t, где q – пропускная способность канала, а t – время передачи.
Кодирование звука
Пример 1.
Производится двухканальная (стерео) звукозапись с частотой дискретизации 16 кГц и глубиной кодирования 32 бит. Запись длится 12 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?
1) 30 2) 45 3) 75 4) 90
Решение:
V(бит) = f(Гц)* B(бит) * k * t(Сек),
где V – размер файла, f – частота дискретизации, B – глубина кодирования, k – количество каналов, t – время.
Значит, V(Мб) = (f * B * k * t ) / 223
Переведем все величины в требуемые единицы измерения:
V(Мб) = (16*1000 * 32 * 2 * 12 * 60 ) / 223
Представим все возможные числа, как степени двойки:
V(Мб) = (24 * 23 * 125 * 25 * 2 * 22 * 3 * 15 * 22) / 223 = (5625 * 217) / 223 = 5625 / 26 =
5625 / 64 ≈ 90.
Ответ: 4
!!! Без представления чисел через степени двойки вычисления становятся намного сложнее.
!!! Частота – это физическая величина, а потому 16 кГц = 16 * 1000 Гц, а не 16 * 210. Иногда этой разницей можно пренебречь, но на последних диагностических работах она влияла на правильность ответа.
Пример 2.
В течение трех минут производилась четырёхканальная (квадро) звукозапись с частотой дискретизации 16 КГц и 24-битным разрешением. Сжатие данных не производилось. Какая из приведенных ниже величин наиболее близка к размеру полученного файла?
1) 25 Мбайт
2) 35 Мбайт
3) 45 Мбайт
4) 55 Мбайт
Решение:
V(бит) = f(Гц)* B(бит) * k * t(Сек),
где V – размер файла, f – частота дискретизации, B – глубина кодирования (или разрешение), k – количество каналов, t – время.
Значит, V(Мб) = (f * B * k * t ) / 223 = (16 * 1000 * 24 * 4 * 3 * 60) / 223 = (24 * 23 * 125 * 3 * 23 * 22 * 3 * 15 * 22) / 223 = (125 * 9 * 15 * 214) / 223 = 16875 / 29 = 32, 96 ≈ 35
Ответ: 2
Пример 3.
Аналоговый звуковой сигнал был записан сначала с использованием 64 уровней дискретизации сигнала, а затем с использованием 4096 уровней дискретизации сигнала. Во сколько раз увеличился информационный объем оцифрованного звука?
1) 64
2) 8
3) 2
4) 12
Решение:
V(бит) = f * log2d * k * t, где V – размер файла, f – частота дискретизации, d – количество уровней дискретизации, k – количество каналов, t – время.
V1 = f * log264 * k * t = f * 6 * k * t
V2 = f * log24096 * k * t = f * 12 * k * t
V2 / V1 = 2
Правильный ответ указан под номером 3.
Ответ: 3
Кодирование изображения
Пример 4.
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64×64 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Решение:
V(бит) = X * Y * log2N, где V – объем памяти, X,Y – количество пикселей по горизонтали и вертикали, N – количество цветов.
V (Кб) = (64 * 64 * log2256) / 213 = 212 * 8 / 213 = 4
Ответ: 4
Пример 5.
Для хранения растрового изображения размером 64×32 пикселя отвели
1 килобайт памяти. Каково максимально возможное число цветов в палитре изображения?
Решение:
V(бит) = X * Y * log2N, где V – объем памяти, X,Y – количество пикселей по горизонтали и вертикали, N – количество цветов.
log2N = V /( X*Y) = 213 / (26 * 25) = 4
N = 16
Ответ:16
Сравнение двух способов передачи данных
Пример 6.
Документ объемом 5 Мбайт можно передать с одного компьютера на другой двумя способами:
А) Сжать архиватором, передать архив по каналу связи, распаковать.
Б) Передать по каналу связи без использования архиватора.
Какой способ быстрее и насколько, если
– средняя скорость передачи данных по каналу связи составляет 218 бит в секунду,
– объем сжатого архиватором документа равен 80% от исходного,
– время, требуемое на сжатие документа – 35 секунд, на распаковку – 3 секунды?
В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого. Так, например, если способ Б быстрее способа А на 23 секунды, в ответе нужно написать Б23. Слов «секунд», «сек.», «с.» к ответу добавлять не нужно.
Решение:
Способ А. Общее время складывается из времени сжатия, распаковки и передачи. Время передачи t рассчитывается по формуле t = V / q, где V — объём информации, q — скорость передачи данных.
Объем сжатого документа: 5 * 0,8 = 4 Мб =4 * 223 бит.
Найдём общее время: t = 35 с + 3 с + 4 * 223 бит / 218 бит/с = 38 + 27 с = 166 с.
Способ Б. Общее время совпадает с временем передачи: t = 5 * 223 бит / 218 бит/с = 5 * 25 с = 160 с.
Способ Б быстрее на 166 – 160 = 6 с.
Ответ: Б6
Определение времени передачи данных
Пример 7.
Скорость передачи данных через ADSL─соединение равна 128000 бит/c. Через данное соединение передают файл размером 625 Кбайт. Определите время передачи файла в секундах.
Решение:
Время t = V / q, где V — объем файла, q — скорость передачи данных.
t = 625 * 210 байт / (2 7 * 1000) бит/c = 625 * 213 бит / (125 * 210) бит/c = 5 * 23 с = 40 с.
Ответ: 40
Пример 8.
У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 217 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 215 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 4 Мбайта по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 512 Кбайт этих данных. Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей? В ответе укажите только число, слово «секунд» или букву «с» добавлять не нужно.
Решение:
Нужно определить, сколько времени будет передаваться файл объемом 4 Мбайта по каналу со скоростью передачи данных 215 бит/с; к этому времени нужно добавить задержку файла у Васи (пока он не получит 512 Кбайт данных по каналу со скоростью 217 бит/с).
Время скачивания данных Петей: t1= 4*223 бит / 215 бит/с = 210 c.
Время задержки: t2 = 512 кб / 217 бит/с = 2(9 + 10 + 3) – 17 c = 25 c.
Полное время: t1 + t2 = 210 c + 25 c = (1024 + 32) c = 1056 c.
Ответ: 1056
Пример 9.
Данные объемом 60 Мбайт передаются из пункта А в пункт Б по каналу связи, обеспечивающему скорость передачи данных 219 бит в секунду, а затем из пункта Б в пункт В по каналу связи, обеспечивающему скорость передачи данных 220 бит в секунду. Задержка в пункте Б (время между окончанием приема данных из пункта А и началом передачи в пункт В) составляет 25 секунд. Сколько времени (в секундах) прошло с момента начала передачи данных из пункта А до их полного получения в пункте В? В ответе укажите только число, слово «секунд» или букву «с» добавлять не нужно.
Решение:
Полное время складывается из времени передачи из пункта А в пункт Б (t1), задержки в пункте Б (t2) и времени передачи из пункта Б в пункт В (t3).
t1 = (60 * 223) / 219 =60 * 16 = 960 c
t2 = 25 c
t3 = (60 * 223) / 220 =60 * 8 = 480 c
Полное время t1 + t2 +t3 = 960 + 25 + 480 = 1465 c
Ответ: 1465